24^2+8^2=c^2

Simple and best practice solution for 24^2+8^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24^2+8^2=c^2 equation:



24^2+8^2=c^2
We move all terms to the left:
24^2+8^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+640=0
a = -1; b = 0; c = +640;
Δ = b2-4ac
Δ = 02-4·(-1)·640
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*-1}=\frac{0-16\sqrt{10}}{-2} =-\frac{16\sqrt{10}}{-2} =-\frac{8\sqrt{10}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*-1}=\frac{0+16\sqrt{10}}{-2} =\frac{16\sqrt{10}}{-2} =\frac{8\sqrt{10}}{-1} $

See similar equations:

| 2x-x²=0.51 | | X-38+1/3x+19+3x-61=180 | | 2x-x2=0.51 | | (-3÷5)b+7+(2÷5)b=19 | | -3÷5b+2÷5b=19 | | 5p^2+7p-10=3p^2+4p-10 | | 8v+v=72 | | 4c+0.9=12.9 | | 10x-8=152 | | 8(a-3)=7a-23 | | 5w-13+w=3w+5w+27 | | 2.5=t/5.2 | | 7a²-2a-6=0 | | x²+5x+12=0 | | 5x-4=2(2x+7) | | 3^x=5000 | | |3x-5|=-7 | | −3(−3x−1)+2x+2=27 | | 2(x-4)=3x-(2x+4) | | 10u−–5u=–15 | | f+f=0 | | −5(5x+3)−5x+1=44 | | −5(5x+3)−5x+1=−44 | | 9x+2=-5+5x+23 | | -3(v+6)=3v+42 | | 7y-16=2(y-3) | | 7y-16=2(7-3) | | 9x+4=5x-16 | | 9(w+8)=-5w-12 | | 7u+14=-2(u+2) | | 3x+50=7x-15 | | 4n-2+6n+8=36 |

Equations solver categories